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Abstract  

Purpose 

Dengue is considered one of the biggest public health problems in recent decades. Climate 

and demographic changes, the disorderly growth of cities, and international trade have 

brought new arboviruses such as chikungunya and zika. Control of arboviruses depends on 

control of the vector: the Aedes aegypti mosquito. 

Objective 

In this work, we propose a methodology for building disease predictors capable of predicting 

infected cases and locations based on machine learning. We also propose an Artificial 

Experts Committee based on meta-heuristic methods to detect the most relevant risk factors. 

Method 

As a case study, we applied the methodology to forecast dengue, chikungunya and Zika, 

with data from the City of Recife, Brazil, from 2013 to 2016. We used arboviruses cases 

data and climatic and environmental information: wind speeds, temperatures and 

precipitation. Results 

The best prediction results were obtained with 10-tree Random Forest regression, with 

Pearsons correlation above 0.99 and RMSE (%) below 6%. Additionally, the Artificial 

Experts Committee was able to present the most relevant factors for predicting cases in each 

twomonth period. 

Conclusion 

The spatio-temporal prediction results showed the evolution of arboviruses, pointing out as 

major focuses on both regions richer in urban green areas and low-income neighborhood 

with irregular water supply. Determining the most relevant factors for prediction, as well as 

the spatial distribution of cases, can be useful for the planning and execution of public 

policies aimed at improving the health infrastructure and planning and controlling the vector. 
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1 Introduction 

1.1 Motivation and problem characterization 

Dengue has long been considered the most important viral disease transmitted by mosquitoes 

(arboviruses), being also the most widespread arbovirus in the world [10]. Dengue is 

clinically manifested in two main forms: the classic dengue, simply called dengue fever, and 

the hemorrhagic form, sometimes known as dengue hemorrhagic fever (DHF) or dengue 

shock syndrome (DHF/SCD). Since the early 1970s, the World Health Organization (WHO) 

has been actively involved in the development and promotion of disease control and 

treatment strategies [10]. Dengue is transmitted by mosquitoes of the Aedes genus, where 

the Aedes aegypti mosquito is its main vector. Aedes aegypti is found mainly in urban areas, 

in water storage deposits [10]. 

The re-emergence of classic dengue epidemics and the emergence of dengue 

hemorrhagic fever are considered to be part of the greatest Public Health problems of the 

second half of the 20th century and the beginning of the 21st century [10]. Demographic 

changes and the intense migratory flow from rural areas to urban regions have generated 

disorderly growth in cities, which, added to the lack of good basic sanitation conditions. 

These factors result in the proliferation of the vector, essentially in tropical and subtropical 

countries, where periodic outbreaks of the disease [10, 11] have been common. 

Due to climate change favorable to the dispersion of vectors and their diseases and the 

growing number of international flights, favorable to the movement of sick or infected 

people in an incubation period, Brazil is experiencing the introduction and a rapid process 

of dispersion towards becoming two new arboviruses endemic to the Americas: the 

Chikungunya virus, introduced between July and August 2014 after entering the Caribbean 

in December 2013 and previously causing major epidemics on the African continent and 

Asia since 2004; and the Zika virus, possibly introduced in the same period during the 2014 

World Cup in Brazil [68]. Preventing and combating the proliferation of Aedes aegypti is 

essential to contain any outbreaks and ensure an improvement in the health conditions of 

rural and urban populations. 

Zika virus is a flavivirus (family Flaviviridae) transmitted by Aedes aegypti. Zika virus 

causes fever and other general symptoms such as headache, rash, malaise, swelling, and 

severe joint pain. More severe conditions, including involvement of the central nervous 

system (Guillain-Barré syndrome, transverse myelitis and meningitis), associated with Zika 

have been commonly reported [68]. There is evidence of a relationship between Zika virus 

and microcephaly, as well as other effects on fetuses, but these issues are not yet fully 

clarified [12, 50]. 

The prevention of arboviruses depends on prioritizing the elimination of the vector, that 

is, the Aedes aegypti outbreaks, and on prediction strategies that can provide health 

managers with adequate information to prevent arbovirus outbreaks [44, 54]. This requires 

active cooperation between government and health agencies in the development and 

execution of disease control strategies with the general population and the use of tools that 

can efficiently and effectively extract information from the various databases that 

municipalities already have. These data contain information on infrastructure, socio-

economic and environmental aspects, distribution of health services and case mapping. 
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These databases can be linked to others, such as those with climate and environmental 

information from water agencies and state health departments, in addition to the mapping of 

the LIRAa index, to obtain temporal and spatio-temporal information of epidemiological 

interest [18, 54]. 

Several studies show that there is a strong correlation between the distribution of 

arboviruses and Aedes aegypti outbreaks with climatic factors, such as historical series of 

humidity, rainfall and temperatures [31, 41, 44, 60, 67]. Urbanization and changes in the 

cultivation of certain crops also strongly influence the distribution of the vector [41, 44]. It 

is also possible to integrate environmental information collected from historical series 

obtained from satellite images [2, 26, 57] and from various sensors using IoT (Internet of 

Things) [66], combining a geoprocessing approach with the use of machine learning tools, 

such as statistical methods, evolutionary and artificial neural networks, to predict the [57] 

vector distribution. 

The combination of several databases and images for prediction can contribute to having 

large volumes of data, perhaps difficult to generalize [60]. In this sense, it is also necessary 

to investigate other machine learning approaches beyond the classical methods and the more 

usual artificial neural networks. This research will also investigate the effectiveness of using 

deep neural networks (deep nets), given that the deep learning approach has been shown to 

be effective in solving several problems [21, 46, 64], in addition to other architectures such 

as the extreme learning machines (ELMs) [36–38] and the support vector machines (SVMs) 

[15, 65, 73]. 

In this work, we propose a methodology for building disease predictors capable of 

predicting infected cases and locations and detecting the most relevant risk factors based on 

an architecture that supports multiple databases. As a case study, the prediction of arbovirus 

cases, infected sites and risk factors was investigated, based on historical series of spatial 

distributions of climate and environmental information (the distribution of wind speed, 

temperatures and rainfall) from cases of arboviruses and infected sites, for dynamic 

prediction through machine learning techniques and risk factor analysis using the Artificial 

Expert Committee based on bioinspired meta-heuristics (examples: artificial ant colonies, 

artificial bee colonies, genetic algorithms etc.) for attribute selection. More specifically, to 

validate the proposal, data provided by the Health Department of the City of Recife, from 

cases of arboviruses from 2013 to 2016, and climate and environmental information, from 

the Pernambuco Agency for Water and Climate (APAC) and the National Institute of 

Meteorology (INMET). The prediction uses information from georeferenced historical 

series of six cycles (bimesters) to predict the consecutive (bimester) cycle. Cases are grouped 

into bimonthly periods because this is the way adopted by the Unified Health System to 

observe arboviruses. 

1.2 Related works 

According to Siriyasatien et al. [60], new data on dengue is constantly being generated and 

must be incorporated into existing data to ensure that predictive models have a complete set 

of new data from which to learn, making predictive models current and relevant. This is also 

true for Zika and Chikungunya. However, ensuring that new observations are incorporated 

into the existing body of data is essentially a manual task, which is time-consuming and 

inconvenient, and may not be comprehensive, resulting in ineffective forecasting models. 

This is a fundamental issue, to develop automatic data update mechanisms on an ongoing 

basis. This would optimize the effectiveness and efficiency of the forecasting model. This 
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problem is aggravated by the need to update the forecasting models frequently, which would 

impose very high overheads (manual import of data from the databases). Infrequent updating 

can decrease the effectiveness and efficiency of the forecasting model and make the planning 

and management of vector control policies ineffective. Since manual data collection is a 

laborious task, it is desirable to automatically collect information using mobile applications 

and the Internet of Things (IoT). 

Cortes et al. [19] used data from 2001 to 2014 to forecast 2015 for the cities of Recife 

and Goiânia. The data were collected monthly and correspond to the number of dengue cases 

reported by the National Notification System (SINAN), of the Unified Health System. The 

prediction problem is approached as the adjustment of two time series using the regression 

methods ARIMA and SARIMA (Season Auto-Regressive Integrated Moving Average). The 

results were not considered adequate for the prediction of the cases in Recife. The research 

lacked consideration of other factors important to the prediction than the case history, such 

as climatic and environmental variables and other information of interest. In addition, there 

was no type of refinement that would allow prediction at the level of neighborhoods and 

districts, since information on the geographic positioning of the cases was not collected. 

Buczak et al. [13] built two models to predict dengue outbreaks in the cities of Iquitos, 

Peru, and San Juán, Puerto Rico, based on sets of ARIMA and SARIMA regressors. Data 

on dengue cases were collected weekly from the respective public health systems of the two 

countries, from 2009 to 2010 and from 2012 to 2013. Data on rainfall, temperature and 

vegetation were collected daily by satellite. Geographic positioning information was not 

considered. Therefore, the methods proposed by Buczak et al. [13] do not return an 

approximate spatial distribution, which makes it difficult to use the result in local planning, 

in this case, at the level of neighborhoods in each city. Buczak et al. [13] also do not analyze 

the weight of each factor in the prediction. 

For Albrieu-Llinás et al. [2], remote sensing systems and geographic information offer 

valuable tools for mapping the distribution of species in a given area. However, the 

prediction of species occurrences by means of probability distribution maps based on 

entomological research1 cross-cutting has limited utility for local authorities. Albrieu-Llinás 

et al. [2] aimed to examine the temporal evolution of the number of houses infested with 

immature stages of Aedes aegypti in each individual neighborhood and to investigate the 

environmental clusters generated with information provided by variables of remote sensing 

to explain the behavior observed over time. Entomological surveys were carried out between 

2011 and 2013 in the city of Clorinda, Argentina, recording the number of homes with 

breeding sites with Aedes aegypti larvae. 10,981 houses were visited, chosen at random. 

Data were organized by neighborhood and collected monthly. Clorinda has 32 

neighborhoods. A SPOT 5 satellite image was used to obtain seven land cover variables: 

bare soil, surface water, wetlands, low vegetation (grass), tall vegetation (shrubs and trees), 

urban buildings and pastures or crops. These variables were subjected to partitioning using 

the k-means algorithm for grouping neighborhoods into four environmental clusters. The 

problem of prediction of sites infected by Aedes aegypti was modeled as a regression 

problem. A regressor based on a generalized linear model was used. The results were also 

presented in the form of geospatial distributions, using heat maps, that is, pseudo-color maps, 

assembled after interpolation of the results. As a tool for visualizing spatial distribution and 

qualitative analysis, the Quantum GIS geographic information system, or QGIS, was used. 

 
1 Entomological research is understood as research involving insects and their relationship with humans, with 

other living beings and with the environment. 
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The method proposed by Albrieu-Llinás et al. [2] showed great potential for local planning. 

However, other regression methods could have been tested. 

Similar to Albrieu-Llinás et al. [2], Scavuzzo et al. [58] proposed an approach to predict 

sites infected by eggs and larvae of Aedes aegypti using satellite images and position data 

from infected breeding sites. The study area was the city of Tartagal, in the province of Salta, 

northwest of Argentina, close to the border with Bolivia. Breeding data were collected 

weekly, from August 2012 to July 2016, always covering 50 properties chosen at random. 

To collect the mosquito’s eggs, ovitraps were used, traps made of plastic that attract the 

females to deposit the eggs and leave them trapped [18]. The climatic and environmental 

variables were obtained through remote sensing: vegetation index (Normalized Difference 

Vegetation Index, NDVI) and water and humidity index (Normalized Difference Water 

Index, NDWI), from the MODIS satellite MOD13Q1; temperature distribution, obtained 

from JAXA’s TRRM satellite (Tropical Rainfall Measuring Mission - NASA / Japan 

Aerospace Exploration Agency). The prediction problem was modeled as a prediction of 

time series using regression. Linear regression methods were tested, SVM with RBF kernel, 

MLP with three hidden layers of three neurons each, k closest neighbors (kNN) and decision 

trees. As quality indexes, the correlation index and the MSE were used. The best results 

were obtained with kNN, MLP and SVM, with a correlation of 0.888, 0.875 and 0.837, in 

this order, against linear regression and decision tree, with 0.774 and 0.679, respectively. 

The results were not presented in the form of geospatial distributions, since the approach did 

not use the positioning information of each breeding site. The approach of Scavuzzo et al. 

[58] is similar to that of Scavuzzo et al. [57], which focus on artificial neural networks. 

For Beltrán et al. [7], the devastating consequences of newborns infected with the Zika 

virus make it necessary to combat and stop the spread of this virus and its vectors: the 

mosquitoes Aedes aegypti. An essential part of the fight against mosquitoes is the use of 

mobile technology to support routine surveillance and risk assessment by Endemic Control 

Agents (ACEs). In addition, to improve early warning systems, public health officials need 

to more accurately predict where an outbreak of the virus and its vector is likely to occur. 

The ZIKA system, proposed by Beltrán et al. [7], aims to develop a comprehensive 

framework that combines e-learning to empower ACEs, and provide community-based 

participatory surveillance and prediction of occurrences and distribution of the zika virus 

and its vectors In real time. Currently, this system is being implemented in Brazil, in the 

cities of Campina Grande, Recife, Jaboatão dos Guararapes and Olinda, in the State of 

Pernambuco and Paraíba, with the highest prevalence of Zika virus disease. The ZIKA 

system also aims to help ACEs to learn new techniques and good practices to improve virus 

surveillance and offer a real-time forecast of the virus and vector. The proposed forecasting 

model can be recalibrated in real time with information from ACEs, government institutions 

and weather stations to predict the areas most at risk of an outbreak of Zika virus and other 

arboviruses transmitted by Aedes aegypti in an interactive map. This mapping and alerting 

system has the potential to help government institutions make quick decisions and use their 

resources more efficiently to prevent the spread of the Zika virus. Although they propose 

the use of Random Forest regressors to make predictions, Beltrán et al. [7] did not carry out 

experiments and focused on the proposal of the mobile application to support participatory 

surveillance, the proposal being only a theoretical model. 

Zhao et al. [77] developed a national pooled model to predict counts of dengue cases 

across different departments of Colombia. The authors used the assumption that 

precipitation, air temperature, and land cover type have been shown to be three important 

determinants of Aedes mosquito abundance and are often used as predictors in dengue 

forecasting [6, 22, 29, 58]. Precipitation data was obtained from the CMORPH (Climate 
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Prediction Center morphing method) daily estimated precipitation dataset [42]. The land 

surface temperatures were extracted from the MODIS Terra Land Surface Temperature 8-

day image products (MOD11C2.006). Enhanced vegetation index (EVI) estimates were 

obtained from the MODIS Terra Vegetation Indices 16-Day image products 

(MOD13C1.006). Considering the role of social injustice in epidemics, the authors also 

included population, education coverage, and the Gini Index (a measure of income inequity) 

as potential predictors, which were retrieved from the Colombian National Administrative 

Department of Statistics. The dengue case surveillance data were extracted from an 

electronic platform, SIVIGILA, created by the Colombia national surveillance program and 

was available at the department level. The national surveillance program receives weekly 

reports from all public health facilities that provide services to cases of dengue. the dengue 

cases reported were a mixture of probable and laboratory confirmed cases without 

distinguishing between the two different case definitions. 

Zhao et al. [77] found that for the majority of Colombia departments, the national model 

more accurately forecasted future dengue cases at the department level compared to the local 

model. This indicates the similarity in importance of dengue vectors across different 

administrative regions of Colombia. Pooling data from individual departments creates a 

training dataset with larger ranges of variables, increasing the extrapolating capacity of 

Random Forest models. Results with Random Forests were superior than the ones obtained 

with MLPs and Deep Convolutional neural Networks. The national pooled model trained by 

a larger dataset had higher prediction accuracy compared to the local models. The authors 

also discovered that the meteorological and environmental variables were more important 

for prediction accuracy at smaller forecasting horizons compared to the socio-demographic 

variables, with socio-demographics being more important at larger forecasting horizons. 

Poor quality housing and sanitation management with high population density are key risk 

factors for dengue transmission, closely related to education and poverty. These results 

demonstrate the complementary nature of these different groups of predictor variables and 

the importance of their inclusion in dengue forecasting models. 

According to Chakraborty et al. [16], Dengue data sets are neither purely linear nor 

nonlinear. They usually contain both linear and nonlinear patterns. If this is the case, then 

the individual ARIMA or Artificial Neural Network (ANN) is not adequate to model this 

situation. Consequently, the combination of linear and nonlinear models can be well suited 

for accurately modeling such complex autocorrelation structures. Hybrid ARIMA-ANN 

models have become more popular due to its capacity to forecast complex time series 

accurately [76]. Neural Network Auto-Regression (NNAR) corresponds to a feed-forward 

neural network model with only one hidden layer with a time series with lagged values of 

the series as inputs. Differently from pure ANNs, SVMs, and LSTMs, NNAR is a nonlinear 

autoregressive model. Popular hybrid models are hybrid ARIMA-ANN [43, 75], hybrid 

ARIMA-SVM model [53] and hybrid ARIMA-LSTM [17]. These models try to fit both 

linear and nonlinear patterns of the time series data. 

Chakraborty et al. [16] proposes a hybrid ARIMA-NNAR model to capture complex 

data structures and linear plus nonlinear behavior of dengue data sets. In the first phase, 

ARIMA catches the linear patterns of the data set. Then the NNAR model is employed to 

capture the nonlinear patterns in the data using residual values obtained from the base 

ARIMA model. Three popular open-access dengue data sets, namely San Juan, Iquitos and 

the Philippines data are used to determine the effectiveness of the proposed model. Different 

linear and nonlinear models have been studied on these data sets that shows highly nonlinear 

patterns in these regions. Mean absolute error (MAE); root mean square error (RMSE) and 

symmetric Mean Absolute Percent Error (SMAPE) are used as evaluation metrics. For the 
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endemic regions San Juan and Iquitos, weekly laboratory-confirmed cases for the time 

periods from May 1990 through October 2011 and from July 2000 through December 2011, 

respectively are considered in this study. The Philippines data set contains the monthly 

recorded cases of dengue per 100,000 population in the Philippines. Monthly incidence of 

dengue are available for the time period January 2008 through December 2016. The 

Philippines monthly data set contains a total of 108 monthly observations and we use the 

total cases reported from all regions in the Philippines in this study. San Juan weekly data 

set contains a total of 1144 observations whereas Iquitos data set contains only 520 

observations. The authors organized the three dengue datasets into training and test sets. 

They studied ARIMA, ANN, SVM, LSTM, NNAR model for these data. The data set is 

divided into two samples of training and testing to assess the forecasting performance of the 

proposed model. The proposed hybrid ARIMA-NNAR model was able to predict nonlinear 

tendencies in comparison with the other models, i.e. ARIMA, ANN, SVM, NNAR, LSTM, 

ARIMA-SVM, ARIMA-ANN, and ARIMA-LSTM. 

Stolerman et al. [63] developed machine-learning algorithms to analyze climate time 

series and their connection to the occurrence of dengue epidemic years for seven Brazilian 

state capitals. The authors focused on the impact of two key variables: frequency of 

precipitation and average temperature during a determined range of time windows in the 

annual cycle. The authors used the publicly available datasets of the Brazilian Notifiable 

Diseases Information System (SINAN), especially the total number of dengue cases per 

year, from 2002 to 2017, for all Brazilian state capitals. The authors assumed that the 

numbers reported were sufficient to identify dengue epidemic years. A year is considered 

epidemic if, for a given city, the incidence of dengue is above 100 cases per 100,000 

inhabitants in the period January-December. To find critical climate signatures, the research 

was restricted to seven state capitals with at least 3 epidemic years and 3 non-epidemic years 

in the period 20022012. Climate data used in this work was acquired from the National 

Institute of Meteorology (INMET), including average temperature time series and 

precipitation for the following cities: Aracajú, Belo Horizonte, Manaus, Recife, Salvador, 

and São Luís (from 1/1/2001 to 12/31/2012) and for Rio de Janeiro (from 1/1/2002 to 

12/31/2013). Instead of regression, the authors reduced the dengue forecasting problem to 

temporal classification. They used RBF and linear kernel SVMs. To evaluate their results, 

they employed accuracy, a metric consistent with a classification approach. The authors used 

the model trained with data from earlier years 2002-2012 to forecast dengue outcomes from 

2013-2017. The state capital of São Luís exhibited the higher accuracy (100% corresponding 

to 3 correct predictions from a total of 3 test years), followed by Manaus and Salvador (80% 

accuracy corresponding to 4 correct predictions from a total of 5 test years). For Rio de 

Janeiro, Aracajú, Belo Horizonte and Recife, the authors reached accuracies below 70%. 

The authors obtained an overall accuracy of 74% considering all 7 capital cities. Therefore, 

the proposed method correctly predicted the outcome of 23 out of 31 experiments. Their 

results indicate that each Brazilian state capital considered has its own climate signatures 

that correlate with the overall number of human dengue-cases. The immediate winter before 

an epidemic year is a strong factor in epidemic year predictions. However, the authors 

recognize that their approach to reduce dengue forecasting to classification could be 

considered somewhat arbitrary, since it is not the canonical way to forecast arboviruses 

according to the Brazilian Ministry of Health. 

2 Materials and methods 
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2.1 Proposal 

In this work, we propose a methodology for predicting cases of arboviruses, infected sites 

and risk factors, based on historical series of spatial distributions of climatic and 

environmental information (the distribution of wind speeds, temperatures and rainfall) of 

cases of arboviruses and infected sites, for dynamic prediction through machine learning 

techniques and risk factor analysis using bioinspired meta-heuristic algorithms for attribute 

selection. The methodology for predicting arboviruses proposed in this work is illustrated in 

the diagram in Figure 1. 

The proposed model can be used for real-time dynamic prediction. Ideally, 

georeferenced information on wind speed, temperature and rainfall would be collected from 

sensor networks distributed throughout the city, from the perspective of smart city. These 

sensors could be connected through ad hoc networks (networks for specific applications) or 

connected directly to the Internet, in an Internet of Things (IoT) approach, feeding specific 

databases with the measured quantities (wind speed, temperature or rainfall) and the latitude 

and longitude positions of each sensor collected by GPS (Global Positioning System). As 

this is not yet the reality of the City of Recife, as a case study, to validate the proposed 

model, climate and environmental data from 2009 to 2017 were used, from the Pernambuco 

Agency for Water and Climate (APAC) and the National Institute of Meteorology (INMET). 

Data on arboviruses cases could also be collected directly from the database of the eSUS 

system (Electronic Access to the Unified Health System), where data on the occurrence of 

arboviruses collected from both public and private health units are registered. However, 

currently, access to this real-time data is restricted and is provided through open data 

platforms from time to time for research and development purposes. As a case study, to 

validate the proposed model, we used data provided by the Health Department of the City 

of Recife, from 2013 to 2016, through the Open Data Portal of the City of Recife. These 

data are organized by neighborhood and, through geocoding, receive the latitude and 

longitude coordinates of the center of the neighborhood. However, geocoding of the 

simplified patient address could also be used, as there is incomplete address information and 

sufficiently anonymized, that is, no information that identifies the patients. However, to 

validate the proposed model and considering that the other databases are not as complete as 

to the spatial distribution, it was decided to keep the representation by neighborhood. 
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Fig. 1 Proposed methodology for predicting arboviruses: prediction of the spatial distribution of arboviruses 

cases and infected sites from historical series of climate and environmental information distributions, 

environmental and clinical surveillance databases 

 

To make a prediction, the monthly accumulated amounts of each of the climatic and 

environmental variables are collected, that is, temperature, wind speed and rainfall, 

corresponding to 12 months. For each type of variable, for each month, a map is assembled 
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with the spatial distribution of that variable, that is, an information plan for that month [8]. 

For data from infected locations, a map is assembled with the spatial distribution of this 

variable in the two-month period, not the month. Within the scope of SUS, the planning of 

actions to combat arbovirus outbreaks is carried out considering bimonthly cycles. A similar 

process is carried out for arbovirus case data. In this approach, we do not separate disease 

prediction models (dengue, chikungunya and zika). The focus of prevention is on the vector, 

the mosquito Aedes aegypti [14, 51, 56, 70, 74]. Spatial distributions of arbovirus cases and 

infected sites for the next two months are predicted. The generated maps must be registered, 

that is, the pixels of each map must correspond exactly to the same spatial position. To 

assemble the maps by interpolation, we used the free and open geographic information 

system QGIS2. The data is passed to QGIS through spreadsheets, where each geographic 

position occupies a line and, in the columns, the information of latitude, longitude, and the 

variables of interest are arranged. The maps are then concatenated. 

Training sets are assembled by traversing the pixels. Each pixel corresponds to an 

instance. The attribute vectors are assembled by scanning the concatenated maps 

simultaneously, concatenating latitude, longitude, and the following information for each of 

the six bimesters, in this order: number of cases or number of breeding sites, depending on 

the type of prediction, if the distribution of cases of arboviruses or infected sites, in that 

order; temperatures, rainfall and wind speeds, for the first and second month of the bimester, 

each. The desired output is the number of cases or number of breeding sites, depending on 

the type of prediction, at the corresponding coordinate. 

With the training sets, the best regressor architectures for predicting arbovirus cases and 

infected sites are investigated. The following architecture families are candidates: 

– Support Vector Machine (SVM); 

– Random Forest (RF); 

– Multilayer Perceptron (MLP); 

– Extreme Learning Machine (ELM); 

– Echo State Machine (ESM); – Deep Echo State Network (Deep-ESN); – Linear 

Regression (LR). 

Each regressor was evaluated in 30 rounds using 10-fold cross validation. For 

quantitative evaluation, the following prediction quality metrics were calculated: correlation 

coefficient (R), Kendall’s τ (KE), Spearman’s ρ (SP), mean absolute error (MAE), o root 

mean square error (RMSE), relative absolute error (percent MAE), and relative squared error 

(percent RMSE). The results were also qualitatively evaluated through the extrapolation of 

the trained models for a given test set, and the results were interpolated for visualization in 

the form of a map and compared to the real distribution. For quantitative validation, we used 

the Weka library, the QGIS geographic information system and specific programs 

implemented in Python and Octave. For qualitative validation, to generate maps with the 

results, we use Quantum GIS. 

The most relevant factors for each prediction were evaluated using as a strategy 

hybridized attribute selection methods with bioinspired optimization methods. Selecting 

attributes returns the relevance of each attribute to the prediction and thus highlights the 

most relevant variables. The simple ranking method was hybridized, which in turn is based 

on a decision tree as a reference classifier/regressor. The following methods were 

investigated, considering a maximum of 500 generations and initial populations of size 20: 

 
2 QGIS, a Free and Open Geographic Information System, available at https://www.qgis.org/pt_BR/site/, 

accessed on June 25, 2021. 

https://www.qgis.org/pt_BR/site/
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– Genetic Algorithm (GA); 

– Evolutionary Search (Modified Genetic Algorithm, ES); 

– Particle Swarm Optimization (PSO); – Artificial Bee Colony (ABC); – Artificial Ant 

Colony (AAC). 

These methods are part of an Artificial Experts Committee to select the most relevant 

factors for prediction. The proposed architecture is shown in the diagram in Figure 2. 

2.2 Area under study 

The City of Recife is the capital of the State of Pernambuco, located in the Northeast Region 

of Brazil, latitude and longitude -8.053889 and -34.880833, respectively (see Figure 3). With 

a land area of approximately 218 km2, it occupies a mostly flat territory, formed by hills, 

islands, peninsulas and mangroves. According to the Brazilian Institute of Geography and 

Statistics - IBGE3, Recife is the northeastern city with the best Human Development Index 

(HDI-M): 0.772, which is considered high. It is the fourth most important Brazilian capital, 

after Brasília, Rio de Janeiro and São Paulo, and has the fourth most populous urban 

agglomeration in Brazil, with 4 million inhabitants in 2017, surpassed only by the 

metropolitan regions of São Paulo, Rio de Janeiro and Belo Horizonte. Recife is home to 

the richest urban agglomeration in the North-Northeast and the eighth richest in Brazil, in 

addition to having the fourteenth highest GDP in the country and the highest GDP per capita 

among the northeastern capitals. The city is the ninth most populous in the country, with 

1,637,834 inhabitants, and its metropolitan region is the seventh in Brazil in population. 

The city presents 69.2% of households with adequate sanitation, 60.5% of urban 

households on public streets with trees, and 49.6% of urban households on public streets 

with adequate urbanization (presence of manhole, sidewalk, paving and curb). When 

compared to other municipalities in the state, it is in position 20 out of 185, 107 out of 185 

and 1 out of 185, respectively. When compared to other cities in Brazil, its position is 1415 

out of 5570, 3654 out of 5570 and 444 out of 5570, in that order. 

The City of Recife was chosen for the case study of this work not only because of the 

availability of data, but mainly because of the various arbovirus outbreaks that have already 

happened: in a more endemic, although less serious form, dengue, in its various forms, 

including hemorrhagic; and the outbreaks of chikungunya fever and zika virus in 2015, the 

latter responsible for the occurrence of thousands of cases of microcephaly in newborns in 

2015 and 2016 [9, 19, 27, 49]. This attests to the social impact of the dynamic prediction of 

arboviruses. 

 
3 Brazilian Institute of Geography and Statistics, IBGE, Recife City Indicators, available at https://cidades. 

ibge.gov.br/brasil/pe/recife/panorama, accessed on June 28, 2021. 

https://cidades.ibge.gov.br/brasil/pe%20/recife/panorama
https://cidades.ibge.gov.br/brasil/pe%20/recife/panorama
https://cidades.ibge.gov.br/brasil/pe%20/recife/panorama
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Fig. 2 Artificial Expert Committee for attribute selection, where each expert is based on a bio-inspired 

heuristic search algorithm: genetic algorithm (genetic search), modified genetic algorithm (evolutionary 

search), particle swarm optimization, artificial bee colony (search for bees), and colony of artificial ants 

(search for ants), for initial populations of 20 individuals and a maximum of 500 generations or iterations. 

 

 

Fig. 3 Profile and geographic location of the City of Recife, capital of the State of Pernambuco, Brazil, latitude 

-8.053889 and longitude -34.880833. 
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2.3 Datasets 

2.3.1 Geographic Information System SIGH-PE 

The Pernambuco Water and Climate Agency, APAC, is a public agency in the State of 

Pernambuco, created by State Law 14,028 of March 26, 2010 to implement the State Water 

Resources Policy, to complement the Integrated Water Resources Management System in 

Pernambuco, SIGRH-PE, and strengthen the planning and regulation of multiple uses of 

water resources in the State. 

APAC performs real-time hydrometeorological monitoring of fluviometric and 

pluviometric stations through PCDs (Data Collection Platforms) distributed in the region of 

the State of Pernambuco. Rainfall stations monitor rainfall in millimeters (mm). 

Fluviometric stations monitor the state of the dams, the quality of the water in the reservoirs, 

and the hydrographic basins of the State. The information is stored in the Geographic 

Information System SIGH-PE4, whose interface can be seen in Figure 4, with the distribution 

of Data Collection Platforms, PCDs, throughout the State of Pernambuco. Rainfall and 

fluviometric data are monitored daily. Data can be exported to spreadsheets, manually 

selecting the PCD of interest and the time interval, with start and end date of data collection. 

Data is distributed by day or by monthly accrual. 

From this base, we chose to use the monthly accumulated rainfall from 2009 to 2017, as 

the prediction is made using cycles of six bimonths. The coordinates used are the latitude 

and longitude of the monitoring stations: Codecipe / Santo Amaro, Várzea and Alto da 

Brasileira. 

 

2.3.2 Meteorological Database for Teaching and Research - BDMEP 

The National Institute of Meteorology (INMET) represents Brazil at the World 

Meteorological Organization (WMO). It is responsible for the traffic of messages collected 

by the South American meteorological observation network and the other meteorological 

centers that make up the World Meteorological Surveillance System. INMET is home to a 

Geographic Information System Center (GISC), part of the main core of the new World 

Meteorological Organization Information System (WIS), the result of the evolution of the 

Global Telecommunication System (GTS). 

The Institute’s Meteorological Data Collection and Distribution System (temperature, 

relative humidity, wind direction and speed, atmospheric pressure, precipitation, among 

other variables) is equipped with upper air sounding stations (radiosonde); surface weather 

stations, manually operated; and the largest network of automatic stations in South America. 

The Meteorological Database for Teaching and Research5, BDMEP, is a database to 

support teaching and research activities and other applications in meteorology, hydrology, 

water resources, public health and the environment. The database houses daily 

meteorological data in digital form, from historical series of the various conventional 

meteorological stations in the network of INMET stations with millions of information, 

 
4 Geographic Information System of the Pernambuco Water and Climate Agency - SIGH-PE, available at 

http://www.apac.pe.gov.br/sighpe 
5  National Institute of Meteorology - INMET, available at http://www.inmet.gov.br/portal/index.php?r= 

bdmep/bdmep, accessed on June 25, 2021. 

http://www.apac.pe.gov.br/%20sighpe
http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep
http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep
http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep
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referring to daily measurements, in accordance with the international technical standards of 

the World Meteorological Organization. 

 

 

Fig. 4 APAC Geographic Information System Interface, SIGH-PE, with the distribution of Data Collection 

Platforms, PCDs, throughout the State of Pernambuco. Rainfall data (precipitation in mm) and fluviometric 

data are monitored daily. 

The atmospheric variables available for consultation in the BDMEP are: precipitation 

occurred in the last 24 hours; dry bulb temperature; wet bulb temperature; maximum 

temperature; minimum temperature; relative humidity; atmospheric pressure at station level; 

insolation; wind direction and speed. From this base, it was decided to use in this work the 

average temperatures and wind speeds per month. The coordinates used are the latitude and 

longitude of the monitoring stations: Codecipe / Santo Amaro, Várzea and Alto da 

Brasileira. 

2.3.3 Open Data Portal of the City of Recife 

The Open Data Portal of the City of Recife 6  was developed by EMPREL, Municipal 

Informatics Company. It aims to make publicly available access and search for government 

data generated by departments and municipal management bodies. The publication of data 

in an open format allows applications or visualizations to be developed, seeking to facilitate 

data analysis, promote the improvement of services through innovation and creativity, and 

contribute to a greater participation of society with the municipal government. Data is 

available in CSV and PDF formats. It is also possible to do direct searches in databases using 

SQL queries and the JSON protocol. 

The Municipal Health Department makes available 11 (eleven) data sets, including data 

on the Health Districts, Health Surveillance, Mobile Emergency Care Service - SAMU, 

Health Units, City Academies, and records of dengue cases, zika and chikungunya registered 

in public and private health units. Case record data are daily and range from 2013 to 2016. 

The data contains incomplete patient address information for anonymization purposes. 

This information can be geocoded to obtain latitude and longitude. Geocoding was partially 

 
6 Open Data Portal of the City of Recife, available at http://dados.recife.pe.gov.br/dataset/casos-dedengue-

zika-e-chikungunya, accessed June 25, 2021. 

http://dados.recife.pe.gov.br/dataset/casos-de-dengue-%20zika-e-chikungunya
http://dados.recife.pe.gov.br/dataset/casos-de-dengue-%20zika-e-chikungunya
http://dados.recife.pe.gov.br/dataset/casos-de-dengue-%20zika-e-chikungunya
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done using a Google Maps plugin. Some points could not be geocoded, due to errors and 

incomplete information in the registers. However, as the resolution of climate and 

environmental variables has low resolution, due to the low density of points (only three 

points of temperature, rainfall and wind speed per month), we chose to group this case 

information by neighborhood and use the latitude and longitude coordinates of the central 

point of the neighborhood. Since the prediction of arboviruses is made through bimonthly 

collections, the total number of cases in each bimonthly period was used, starting in January. 

2.4 Regression models 

2.4.1 Linear Regression 

The linear regression is the simplest method to predict numeric values. In this method, it is 

assumed that the data has a linear behavior, and that the prediction variable can be 

represented as a linear combination of the attributes with their pre-determined weights [71]. 

Thus, the general model of linear regression is represented by the Equation 1. 

𝑦 = 𝑤0 +𝑤1𝑥1 + 𝑤2𝑥2 +⋯+ 𝑤𝑛𝑥𝑛 , (1) 

where y is the prediction variable; x1, x2,..., xn, represent the values of the attributes and w0, 

w1, w2,..., wn represent the weights of each attribute. The idea of the linear regression 

algorithm is, then, to find the optimal weights that best represent the problem. One of the 

ways to find the optimal weights is to minimize the sum of the squared difference between 

the predicted value and the actual value [71]. The sum of the squared difference is calculated 

by Equation 2: 

𝑆 =∑[𝑦(𝑖) −∑𝑤𝑗𝑥𝑗
(𝑖)

𝑛

𝑗=0

]

2
𝑘

𝑖=1

. (2) 

  

2.4.2 Artificial Neural Networks 

Artificial neural networks (ANN), consists in a machine learning technique based on the 

behavior of the human brain [59]. The neural networks consist of smaller units, artificial 

neurons, which are fundamental to their functioning. The artificial neurons contains the 

following elements: (1.) a set of synapses or connectors - where a signal xi at the entrance to 

the synapse j connected to the k neuron is multiplied by the synaptic weight wk,j (2.) an adder 

to add the input signals, weighted by the respective neuron synapses; (3.) an activation 

function to limit the output of a neuron [32]. Mathematically, an artificial neuron is 

represented by the Equation 3 and by the Equation 4: 

𝑢𝑘 = ∑𝑤𝑘,𝑗𝑥𝑖

𝑛

𝑗=1

, (3) 

𝑦𝑘 = 𝜑(𝑢𝑘 + 𝑏𝑘), (4) 

wherein x1, x2, ..., xn represent the input signals; wk,1, wk,2, ..., wk,n represent the synaptic 

weights of the input signals xi for the k-th neuron; bk, is the term bias and φ is a neuron 
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activation function. In regression applications, the inputs x1, x2, ..., xn of the input layer 

correspond to the forecasting window. For instance, in case of temporal forecasting, the 

inputs are observed time window of the time-series. 

The network architecture used in this work was the Multilayer Perceptron (MLP). In this 

configuration, the neural network has an input layer, two or more hidden layers and an output 

layer [32]. ANNs have also been widely used to predict disease cases. For example, in the 

prediction of dengue cases in the city of São Paulo, Brazil [3]. They were also used to predict 

dengue outbreaks in the northeastern coast of Yucatán, Mexico, and in San Juan, Puerto Rico 

[45]. Moreover, the ANNs were applied to model cases of infection by Salmonella in the 

state of Mississippi, USA [1]. 

 

2.4.3 Support Vector Regression 

The support vector regression is a supervised machine learning technique for data analysis 

and pattern recognition. The idea of the SVR algorithm is to find the best hyperplane defined 

by Vapnik’s ε-insensitivity loss function. When this hyperplane is found, a linear regression 

is applied to the corresponding hyperplane. In situations where the problem is linearly 

separable, the best hyperplane is given by the equation: 

y = wTx + b, (5) 

where w = (w1, w2, ..., wn)T is the vector of weights, x = (x1, x2, ..., xn)T is the feature vector, 

and b is the bias. For problems that are not linearly separable, the data is mapped to a 

hyperplane in a larger dimension. Thereupon, the algorithm seeks to solve the problem by 

applying the linear regression of the equation 5 in the corresponding hyperplane. For 

nonlinearly separable problems, SVR machines use kernel functions, K : R × R → R. Then, 

the SVR output assumes the following expression: 

y = K(w, x), (6) 

where the kernel function can be polynomial, sigmoidal, Gaussian, or even assume other 

mathematical expressions [23, 61, 71]. 

2.4.4 Extreme Learning Machines 

Extreme Learning Machines (ELMs) emerged as an alternative learning method for Single 

Layer Feed-forward Networks, (SLFNs), that usually relies on the Backpropagation 

algorithm for classification or regression tasks. Created by [36], ELMs consist of SLFNs, in 

which the weights and biases between the input and hidden layer are randomly set, while 

only the output weights are analytically determined, as a linear system, using the Moore-

Penrose generalized inverse [4]. The reliability of ELMs as an alternative for SLFNs is found 

on the fact that the weights and biases between the input and hidden layer of an SLFN do 

not need to be tuned, if we guarantee that its activation functions are infinitely differentiable 

[37], and that an SLFN with a hidden layer with sufficient neurons N and with almost any 

activation function will be able to learn N distinct observations [35]. 

ELMs also provide other desired characteristics for real applications, including a 

learning speed that can be greater than conventional feed-forward networks, due to the one-

shot training phase; the tendency of achieving a better generalization performance, small 

training errors and the smallest norm of weights [37] (according to Bartlett [5], the smaller 

the norm of weights, the better generalization performance the network tends to achieve). 
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The proposed ELM algorithm by [37], is as follows: 

Suppose a training set: 

𝜓𝑇 = {(𝐱𝑖 , 𝐭𝑖)|𝐱𝑖 ∈ R𝑛 , 𝐭𝑖 ∈ R𝑚}𝑖=1
𝑁𝑇 , 

an activation function g : R → R and a number N of hidden nodes, do 

1. Randomly, assign input weights and bias, wi and bi, respectively, to the input neurons i = 

1, ..., N; 

2. Calculate the hidden layer output matrix H, with entries Hij = g(wjxi + bj); 

3. Calculate the ouput weight β, from β = H†O, where O = [o1, ..., oN]T  is the desired output 

of the training dataset. 

2.4.5 Echo State Networks 

Jaeger [40] and Maass et al. [48] marked the birth of Reservoir Computing. The proposed 

techniques consist of a novel approach for training and using recurrent neural networks, and 

are named Echo State Networks (ESN) and Liquid State Machines (LSM). Later, a new 

learning rule named Back-Propagation De-Correlation emerged from a completely different 

background, but presenting very similar concepts if compared with both previous 

approaches [69]. 

The ease of use and excellent performance of those techniques grew the interest of 

academy for using them, and research on this field gained momentum. In this way, ESN and 

LSM were applied in several applications, as explained in the following paragraphs. 

Jaeger [40] applied ESN to dynamic pattern classification, testing the network for 

periodic sequence learning, using a target signal prepared from the melody “The Housing of 

The Rising Sun” and switchable point attractor learning. The network, when properly tuned, 

showed sufficient capability for generating stable periodic sequences of sounds robust to 

noise. 

Ghani et al. [28] also showed the ESN performance when applied to speech recognition. 

The network performance was compared to normal feed-forward neural networks, and the 

results suggested that the reservoir, allied to feed-forward neural networks showed better 

classification rates than only Neural Networks. Very good results were also achieved when 

a pre-processing step was added to the classification task. 

The proposed approach of ESN consists of using Recurrent Neural Network (RNN) with 

topology and weights randomly set, where the network is driven by its external input and 

then the obtained response is used to train a linear regression or classification function [69], 

where only the readout layer is trained. 

ESNs are, however, not fully understood and still have some parameters to be tuned or 

to be found. Despite this, they often present good performance, managed by the Echo State 

property (ESP), which states that the networks should asymptotically forget its initial state 

when driven by an external signal [69]. Furthermore, given the ESP, ESNs should slowly 

forget the initial inputs when a new one comes, causing the fading memory. This property 

also allows the reminiscence of echoes, enriching the set of nonlinear transformations and 

mixings of the current and previous signals, inside its reservoir. 

Some desired performance characteristics, achieved by RC, are the nonlinear extension 

of the input data to other domains, where the classification task can be done more accurately. 

This enables the use of a relatively simple structure and computationally undemanding linear 

classification or regression algorithms. Also, because reservoirs are created randomly, they 
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tolerate some internal variation in their parameters, without significantly compromising their 

performance. 

The proposed ESN, initially designed by [40], and also detailed in [47], can be 

summarized as follows: 

1. Generate a random reservoir of Recurrent Neural Networks, with random input weights 

(Win), random recurrent matrices weights (W), and a random leaking rate α; 

2. Run the topology using the training input, u(n), and collecting the correspondent results 

x(n); 

3. Compute the linear readout weights, Wout, from the reservoir, using linear regression and 

minimizing the error between the obtained output, y(n) and the desired result, ydesired(n); 

4. Use the trained network on new input data, computing the obtained output y(n) by 

employing the output weights Wout. 

2.4.6 Random Forest 

Random Forests are based on decision tree committees organized in bagging [33]. Decision 

trees separate data iteratively, testing one property at a time. The resulting sheets represent 

the most specific category. The root represents the raw data. The random forest is built with 

many of these trees, all with their own class prediction for any input provided. The most 

voted class is the departure of Random Forest. Random Forests have been used to solve a 

plethora of biomedical problems, specially to develop intelligent systems to support 

diagnosis [20, 24, 25]. 

As the most relevant characteristics to determine the decision boundary between classes 

of virus DNA sequences are unknown, Random Forests can be powerful methods for 

classification, as they are able to verify many relevant properties through their different trees. 

In the bagging process, each tree receives a version of the training set with a reduced number 

of attributes. Thus, it is possible to build decision criteria that take into account only a few 

attributes and these criteria can be winners in the vote, determining the final decision of the 

classifier. 

2.5 Metrics 

The main metrics we adopted to evaluate the models are the following: the correlation 

coefficient and the Relative Quadratic Error (RMSE percentage). The correlation coefficient 

is a statistical measure between expected and forecasted values. This value varies from -1 to 

1. When it approaches 1, it indicates a strong positive correlation. Conversely, when the 

correlation coefficient is close to -1, it indicates that the variables have a strong negative 

correlation. When the correlation coefficient is close to zero, it indicates that there is no 

correlation between the variables [71]. The value of the correlation coefficient serves as the 

global evaluator for the model. Therefore, it is possible to obtain a high correlation 

coefficient as well as at the same time obtain high values for local errors. For this reason, it 

cannot be the only metric for assessing model performance. In order to avoid a superficial 

evaluation of the regressors, we therefore chose the RMSE (%) as an evaluation metric. The 

Equation 7 shows the expression of the calculation of the relative quadratic error, where pi 

is the predicted value and ai is the actual value, for i = 1, 2, ..., n. 
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RMSE(%) = √
∑ (𝑝𝑖 − 𝑎𝑖)

2𝑛
𝑖=1

∑ 𝑎𝑖
2𝑛

𝑖=1

× 100%. (7) 

In addition to the RMSE (%), we also calculated the Root Mean Square Error (RMSE), 

the Mean Absolute Error (MAE), the Mean Absolute Percentage Error (MAPE) and the 

Mean Percentage Error (MPE) (Equations 8-11): 

RMSE = √
1

𝑛
∑𝑒𝑖

2

𝑛

𝑖=1

, (8) 

MAE =
1

𝑛
∑|𝑒𝑖|

𝑛

𝑖=1

, (9) 

MAPE =
100%

𝑛
∑|

𝑒𝑖

𝑎𝑖
|

𝑛

𝑖=1

, (10) 

MPE =
100%

𝑛
∑(

𝑝𝑖 − 𝑎𝑖

𝑝𝑖
)

𝑛

𝑖=1

, (11) 

where, pi is the forecasted value, ai is the actual value and ei = ai − pi is the difference between 

the actual value and the forecasted value. 

The Pearson’s Correlation Coefficient R is defined as follows: 

𝑅 =
∑ (𝑝𝑖 − 𝑝̅)(𝑎𝑖 − 𝑎̅)𝑛
𝑖=1

√∑ (𝑝𝑖 − 𝑝̅)2𝑛
𝑖=1 ∙ ∑ (𝑎𝑖 − 𝑎̅)2𝑛

𝑖=1

, (12) 

where 𝑝̅ and 𝑎̅ are the sample average values for the sets of predicted and actual values, 

respectively. 

Similarly, the Spearman’s Rank Correlation Coefficient ρ is defined as following: 

𝜌 =
∑ (𝑅(𝑝𝑖) − 𝑅̅(𝑝))(𝑅(𝑎𝑖) − 𝑅̅(𝑎))𝑛
𝑖=1

√∑ (𝑅(𝑝𝑖) − 𝑅̅(𝑝))2𝑛
𝑖=1 ∙ ∑ (𝑅(𝑎𝑖) − 𝑅̅(𝑎))2𝑛

𝑖=1

, 
(13) 

where R(pi) and R(ai) are the ranks of pi and ai, whilst 𝑅̅(𝑝)  and 𝑅̅(𝑎)  are the sample 

averages of the ranks of pi and ai, respectively. 

The Kendall’s Rank Correlation τ is given as follows: 

𝜏 =
2

𝑛(𝑛 − 1)
∑∑sign(𝑝𝑖 − 𝑝𝑗) ∙ sign(𝑎𝑖 − 𝑎𝑗)

𝑗−1

𝑖=1

𝑛

𝑗=1

, (14) 

where n is the number of observations and 1 ≤ i,j ≤ n. The signal function, sign, is defined 

as following: 
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sign(𝑥) = {
1, 𝑥 > 0
0, 𝑥 = 0
−1, 𝑥 < 0

, 

for x ∈ R. 

 

2.6 Experimental arrangement 

The experiments were carried out on a personal computer, Intel I7 processor, 16GB of RAM, 

Windows 10 operating system. The fusion of databases and construction of knowledge bases 

was carried out using a program built in Python specifically for this function [52]. The 

knowledge bases were saved in a text file, in ARFF format. The regression experiments 

were mostly carried out in the Weka machine learning and data mining environment, except 

for the ELM, ESM and Deep-ESM methods. The Weka environment was built using the 

Java language, and can be extended by adding other libraries and plugins [30, 34, 72]. The 

ELM, ESM and Deep-ESM methods were tested using programs built in Matlab/Octave 

language, in the GNU Octave environment. Raw results were stored in MS Excel 

spreadsheets. The statistical graphs in boxplots were built using the SciDavis program, 

aimed at building scientific graphs [62]. The maps were built using the Quantum GIS 

geographic information system [39, 55]. 

3 Results 

3.1 Forecasting model 

The predictor model of arboviruses cases proposed in this work is based on the 

spatiotemporal analysis, combining information on climatic and environmental variables 

from the monthly accumulations, specifically temperature, rainfall and wind speeds, with 

the bimonthly data on the number of cases. We consider a cycle of six bimonths, that is, one 

year, the cycle of the Aedes aegypti mosquito. All this information is related to latitude and 

longitude coordinates, and the prediction result is also associated with geographic 

positioning. Thus, the attribute vectors have a total of 44 attributes. Data were collected from 

the respective databases considering a simplified distribution by neighborhood, considering 

all 94 neighborhoods of the City of Recife. Each neighborhood is associated with a central 

geographic position, that is, a pair of latitude and longitude. In order to investigate the best 

regressor architectures, approximate distributions were generated for each variable of 

interest (attribute) using an irregular grid, generating bases of 1786 vector instances of 44 

attributes. Using data from the years 2013, 2014, 2015 and 2016 and considering that the 

cycle considered for prediction is six bimonths, that is, one year, each of the six bimonths 

of 2014, 2015 and 2016 are predicted considering the geospatial information of the 

respective previous years. This process resulted in 18 knowledge bases. 

Each regressor was evaluated in 30 rounds using 10-fold cross validation. Thus, for the 

general evaluation of the prediction, considering that there are a total of 18 bases, each 

regressor was evaluated in 30×10×18 = 5400 training and tests. For quantitative evaluation, 

the following prediction quality metrics were calculated: Pearson’s (R), Kendall’s τ (KE), 
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and Spearman’s ρ (SP) correlation coefficients, the mean absolute error (MAE), the mean 

square error (RMSE), relative absolute error (percent MAE) and relative squared error 

(percent RMSE). However, in the data analysis, only R was considered as a global quality 

metric, and RMSE (%) as a local quality metric. The following regressor configurations 

were evaluated, where Linear Regression (LR) is considered the standard regressor in 

environmental applications of spatio-temporal analysis: 

– Support Vector Machine (SVM): C = 0.1, linear kernels (or degree 1), degree 2 and 3 

polynomial, and RBF; 

– Random Forest (RF): from 10 to 100 trees, increasing the number of trees from 10 to 

10; 

– Multilayer Perceptron (MLP) with a single hidden layer with 2, 5, 10 and 20 neurons; 

– Extreme Learning Machine (ELM): single hidden layer, 50 and 100 neurons, testing 

linear kernels, degree 2 and 3 polynomial, and RBF; 

– Echo State Machine (ESM): with a single hidden layer, and deep version with 2, 5 and 

10 layers, 10 neurons per layer; 

– Linear Regression (LR). 

The Correlation Coefficient R, a quantity ranging from 0 (total decorrelation) to 1 (total 

correlation), was considered to analyze the global behavior of each prediction, that is, how 

a given regressor method behaves in the most general plane. The R metric is considered an 

optimistic metric: the result can look very good, something greater than 0.8, for example, 

and local, punctual errors can be high. Therefore, R cannot be considered alone. To 

compensate for this, we also chose to look at the RMSE (%) metric, which serves as a 

measure of local error. The closer to 0% the better. Thus, a regressor is considered good if 

it has an R considered high and an RMSE (%) considered low. This work considers a high 

R to be above 0.9, and a low RMSE (%) to be below 5%. Training time was measured in 

milliseconds (thousandths of seconds). Training times less than 1 millisecond are considered 

0. Even though training time is not critical for this proposal, this large one was still measured, 

to help decide which regressor configurations are better within the same family of regression 

methods (for example: MLP neural networks with different numbers of neurons in the 

hidden layer). 

Detailed results of R, RMSE (%) and training time (ms) are displayed in Tables 1, 2, 3, 

4, 5 and 6. In Table 1 the results for linear regression are presented. Table 2 presents the 

results for MLP neural network, a single hidden layer, for 2, 5, 10, and 20 neurons in the 

hidden layer. In Table 3 are shown the results for SVM, kernel polynomial degree 1 (linear), 

2, 3, and RBF. Table 4 shows the results for ELM neural network, a single hidden layer with 

automatically determined number of neurons, kernel polynomial degree 1 (linear), 2, 3, and 

RBF. In Table 5 the results for neural networks ESM (a single hidden layer with 10 neurons) 

and Deep-ESM (5 and 10 hidden layers, 10 neurons per layer) are displayed. Finally, in 

Table 6 are presented the results for Random Forest, from 10 to 100 trees, varying every 10. 

The best results on average are highlighted in red. 

 

Table 1 Results of R, RMSE (%) and training time (ms), sample mean and standard deviation (SD), for linear 

regression. 
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Figures 5, 6 and 7 show the statistical distributions in boxplots of the Correlation 

Coefficient (R), RMSE (%), and time of model training in milliseconds, respectively, for 

linear regression, multilayer perceptron artificial neural networks (MLP), extreme learning 

machines (ELM), single-layer (ESM) and deep echo state machines (Deep ESM), echo-state 

machines. support vector machines (SVM), and Random Forests. 

 

 

Table 2 Results of R, RMSE (%) and training time (ms), sample mean and standard deviation (SD), for MLP 

neural network, a single hidden layer, for 2, 5, 10 and 20 neurons in the hidden layer. The best results on 

average are highlighted in red. 

 

Table 3 Results of R, RMSE (%) and training time (ms), sample mean and standard deviation (SD), for SVM, 

polynomial kernel degree 1 (linear), 2, 3 and RBF. The best results on average are highlighted in red. 

 

Table 4 Results of R, RMSE (%) and training time (ms), sample mean and standard deviation (SD), for ELM 

neural network, single hidden layer, automatically determined number of neurons in hidden layer, polynomial 

kernel degree 1 (linear), 2, 3 and RBF. The best results on average are highlighted in red. 

3.2 Most relevant features selected by the Artificial Expert Committee 

To analyze the most relevant factors for prediction, five bioinspired heuristic search methods 

were used to select attributes. These methods used as objective function a decision tree as a 

regressor, evaluated using cross-validation with 10 folds. Each method returned the most 

relevant attributes and their degree of relevance in percentage, from 0% to 100%. An 

attribute was considered relevant when its degree of relevance was different from 0%, 

typically at least 10% in the experiments performed in this work. These five methods formed 

the Artificial Expert Committee, with the final outcome of relevance decided by voting. 

Thus, an attribute is considered relevant if it was considered relevant by the simple majority 
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of the artificial expert committee members. All meta-heuristic algorithms were run 

considering initial populations of candidates for the solution of 20 individuals and a total of 

500 iterations or generations. In these experiments, we use the Weka library. The settings 

used were as follows: 

– Genetic Algorithm (or Genetic Search, GS): crossover probability 0.6, mutation 

probability 0.033, communication frequency 20, 20 individuals, 500 generations; 

– Modified Genetic Algorithm (Evolutionary Search, ES): crossover probability 0.6, 

mutation probability 0.1, bit-flip mutation, generational substitution (children replace 

parents in the next generation), selection of individuals per tournament, communication 

frequency of 20, 20 individuals, 500 generations; 

– Optimization by Particle Swarm (PSO Search): individual weight 0.34, inertia factor 

0.33, social weight 0.33, mutation probability 0.01, communication frequency 20, 20 

particles, 500 iterations; 

– Artificial Bee Colony (or Bee Search, BS): chaotic coefficient 4.0, chaotic type logistic 

map, mutation probability 0.01, bit-flip mutation, humidity radius 0.98, mutation radius 

0.8, communication frequency 20, 20 bees, 500 iterations; 

– Artificial Ant Colony (or Ant Search, AS): chaotic coefficient 4.0, chaotic type logistic 

map, evaporation 0.9, heuristic 0.7, mutation probability 0.01, mutation type bit-flip, 

target merits, 2.0 pheromone, 20 communication frequency, 20 ants, 500 iterations. 

 

Table 5 Results of R, RMSE (%) and training time (ms), sample mean and standard deviation (SD), for ESM 

and Deep-ESM neural networks. The best results on average are highlighted in red. 
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Table 6 Results of R, RMSE (%) and training time (ms), sample mean and standard deviation (SD), for 

Random Forest, from 10 to 100 trees, step of 10 trees. The best results on average are highlighted in red. 

 

 (a) (b) 

 

 (c) (d) 

 

 (e) (f) 

Fig. 5 Correlation coefficient R for: (a) linear regression; (b) MLP neural networks with a single hidden layer, 

with 2, 5, 10, and 20 hidden neurons; (c) ELM neural networks with linear kernel, degree 2 and 3 polynomial, 

and RBF; (d) ESM and DeepESM neural networks, with 2, 5 and 10 hidden layers, with 10 neurons per 

hidden layer; (e) SVM with linear kernel, polynomial of degrees 2 and 3, and RBF; (f) Random Forests with 

10, 20, 30, ..., and 100 trees. 

The results were generated considering the initial databases distributed by 

neighborhood, without applying interpolation, a base for each of the six bimesters, for the 

years 2014, 2015 and 2016, using data from 2013 to 2016. Each base has, therefore, 94 

instances, associated with 94 neighborhoods and districts of the City of Recife, with 44 

attributes, which include latitude and longitude of the central point of the neighborhood, 
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number of cases per two months and temperatures, rainfall and wind speeds per month, for 

each one. of the six quarters of the year. Tables 7, 8 and 9 present the results of the automatic 

analysis of the most relevant factors for the two months of 2014, 2015 and 2016, in that 

order. 

3.3 Spatio-temporal analysis 

Table 10 shows the prediction results for linear regression and Random Forest with 10 trees, 

considering training sets of 4665 instances and test sets of 1555 instances, obtained from 

interpolation of real data. The best results are highlighted in red. As quality metrics, the 

correlation index R, the RMSE (%) error and the correlation indexes of Kendall and 

Spearman were considered. 

 

 (a) (b) 

 

 (c) (d) 

 

 (e) (f) 

Fig. 6 RMSE (%) for: (a) linear regression; (b) MLP neural networks with a single hidden layer, with 2, 5, 

10, and 20 hidden neurons; (c) ELM neural networks with linear kernel, degree 2 and 3 polynomial, and RBF; 
(d) ESM and DeepESM neural networks, with 2, 5 and 10 hidden layers, with 10 neurons per hidden layer; 
(e) SVM with linear kernel, polynomial of degrees 2 and 3, and RBF; (f) Random Forests with 10, 20, 30,..., 

and 100 trees. 

Regarding the qualitative results, all forecasting maps were generated with a resolution 

of 120 dpi, scale 1:182666. Figures 8, 9, and 10 present the forecasting results for the 

Random Forest with 10 trees, considering training sets of 4665 instances and test sets of 

1555 instances, obtained from interpolation of real data, for bimonths 1 (January to 

February), 2 (March to April), 3 (May to June), 4 (July to August), 5 (September to October), 

and 6 (November to December), for the years 2014, 2015 and 2016, respectively. 
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4 Discussion 

4.1 Forecasting model 

Table 1 shows that the results with linear regression are reasonable in relation to the 

correlation index R, with mean 0.8 and standard deviation 0.1, and that learning is very fast, 

with training time average of 1ms and standard deviation of 3ms. However, the RMSE (%) 

is high: 51 on average with a standard deviation of 23. The boxplot plot in Figure 5(a) shows 

the distribution of the correlation index R, with half of the results (a box) ranging from 0.75 

to 0.9. Considering the distribution of the mustache in the graph, the variation is greater: 

from 0.65 to 1.00. However, there is a point off that shows that at least one result of R was 

only 0.35. Thus, the correlation index R varies considerably. Figure 6(a) shows the boxplot 

of the RMSE distribution (%), with a concentration around 50%, which is a considerably 

large error. There is still a point off close to 200, which shows that at least one result has an 

error of almost 200%. Figure 7(a) shows the boxplot of the distribution of training time, 

showing that linear regression is a very fast regression method, with the absolute majority 

of results concentrated in less than 1ms, despite a point out close to 16ms, which is still 

pretty low. 

 

 

 (a) (b) 

 

 (c) (d) 

 

 (e) (f) 

Fig. 7 Training time (ms) for: (a) linear regression; (b) MLP neural networks with a single hidden layer, with 

2, 5, 10, and 20 hidden neurons; (c) ELM neural networks with linear kernel, degree 2 and 3 polynomial, and 

RBF; (d) ESM and DeepESM neural networks, with 2, 5 and 10 hidden layers, with 10 neurons per hidden 

layer; (e) SVM with linear kernel, polynomial of degrees 2 and 3, and RBF; (f) Random Forests with 10, 20, 

30, ..., and 100 trees. 

Table 2 presents the results for multilayer perceptron neural networks (MLP), with 2, 5, 

10 and 20 neurons in the hidden layer. The results were already interesting with 2 neurons 
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in the hidden layer: the correlation index R proved to be quite high, with a mean of 0.99, 

and stable, as the standard deviation was only 0.01. The RMSE (%) was also reasonably 

low: an average of 6% with a standard deviation of 8, but still a little above the limit that we 

consider great in this work, of 5%. The training time can be considered low: 97ms with a 

standard deviation of 84ms. Figure 5(b) shows the boxplot of the distribution of the 

correlation index R, showing that the results of R for the four studied configurations are very 

similar and considerably high: all distributions are very concentrated in 1, 00. This behavior 

is a little different only for the configuration with 2 neurons in the hidden layer, with a point 

out of 0.77, but in general this configuration also resembles the other three. The behavior 

for the RMSE (%) is somewhat different, according to the boxplot in Figure 6(b): although 

the configuration with 2 neurons in the hidden layer is concentrated around 5%, the 

mustache of the distribution reaches 20%. There is also a point off at 65%. The 

configurations with 5, 10 and 20 neurons in the hidden layer are very similar to each other, 

except that the configuration with 5 neurons has an off point at approximately 15%. 

Configurations with 10 and 20 neurons can be considered equivalent. Figure 7(b) shows the 

distribution of training time in ms. Configurations with 2 and 5 neurons in the hidden layer 

are significantly faster, while the configuration with 20 neurons is not only slower training 

in median, but also this training time spreads more, ranging from 1000ms to almost 

10000ms, or that is, from 1 to 10 seconds. Although this time is not critical, it can be 

considered as the best configuration the one with 10 neurons in the hidden layer, as it has a 

high correlation index R, a low RMSE (%), and consumes less memory (fewer neurons) and 

have faster training. 
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Table 7 Result of the analysis of the most relevant factors through the algorithms of Genetic Search, 

Evolutionary Search, Particle Swarm Optimization, Bee Search and Ant Search, for 20 solution candidates 

evolving in 500 generations, for the year 2014. 

In Table 4 are shown the results for extreme learning machines (ELM), with linear 

kernel, polynomial degrees 2 and 3, and radial basis function (RBF). Except for the RBF 

kernel, all configurations showed very high mean R correlation index (from 0.999 to 1.000) 

and very low standard deviation. Likewise, all polynomial configurations reached RMSE 

(%) errors well below the 5% considered in this work as a standard. The average training 

time also ranged, in these polynomial configurations, from 200ms to 500ms. Figure 5(c) 

shows the boxplot of the distribution of the correlation index R, with practically similar and 

considerably high results for the linear, polynomial degree 2 and 3 kernels, touching 1.00 

and with almost zero dispersion. The RBF kernel was also stable, but with a distribution of 

R concentrated in 0.66. Figure 6(c) presents a similar scenario: RMSE (%) errors fairly 

concentrated between 0.00% and 0.20%, except for the RBF kernel, again. In Figure 7(c) 
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the training time distributions of the used architectures are presented. The behaviors of linear 

and polynomial degree 2 and 3 kernels could be considered similar if the polynomial degree 

2 kernel configuration did not have an unexpected scattering, with mustache reaching 

2400ms and point outside 3500ms. Again, the results with RBF were not interesting. Thus, 

linear ELM can be considered the most suitable ELM configuration to solve the problem. 

 

 

Table 8 Result of the analysis of the most relevant factors through the algorithms of Genetic Search, 

Evolutionary Search, Particle Swarm Optimization, Bee Search and Ant Search, for 20 solution candidates 

evolving in 500 generations, for the year 2015. 
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Table 9 Result of the analysis of the most relevant factors through the algorithms of Genetic Search, 

Evolutionary Search, Particle Swarm Optimization, Bee Search and Ant Search, for 20 solution candidates 

evolving in 500 generations, for the year 2016. 
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Table 10 Prediction results for linear regression and Random Forest with 10 trees, considering training sets 

of 4665 instances and test sets of 1555 instances, obtained from interpolation of real data. As quality metrics, 

the correlation index R, the RMSE (%) error and the correlation indexes of Kendall and Spearman were 

considered. Results are presented as sample average and standard deviation (SD). The best results are 

highlighted in red. 

Table 3 shows the results for support vector machines (SVM), with linear (or degree 1 

polynomial), 2- and 3-degree polynomial and RBF kernels. The results with linear kernel 

somewhat resemble the results with linear regression, although a little better and more stable 

(low standard deviation): correlation index R of 0.87, with standard deviation of 0.07, and 

RMSE (%) 42% with a standard deviation of 21%. The training time for the linear kernel, 

however, was very variable and relatively long: 1622ms with a standard deviation of 703ms. 

The linear kernel was the slowest SVM configuration of all evaluated. The results with 

degree 2 and 3 polynomial kernels and RBF were considered very good: very low R 

correlation indices, practically 1.00, with very low standard deviations (4.00×10−5 for 

degree polynomial kernels 2 and 3, and 9.00×10−5 for the RBF kernel). The RMSE results 

(%) were also well below 5%: 0.6% with standard deviation 0.2% for grade 2 and 3 

polynomial kernels, and 0.7% with standard deviation 0.3% for the RBF kernel. The shortest 

average training time was obtained with the RBF kernel: 490ms with a standard deviation 

of 124ms. Figure 5(e) shows the boxplot of the distribution of the correlation index R. It can 

be noted that there is a concentration between 0.84 and 0.96 for the linear kernel (degree 1 

polynomial). It is also evident that the 2- and 3-degree polynomial and RBF kernels achieved 

excellent results: concentration at 1.00 with practically zero deviation. From a statistical 

point of view, the results obtained for the correlation index R for the 2- and 3-degree 

polynomial and RBF kernels are equivalent. The same is true for the RMSE (%) error, as 

shown in the boxplot in Figure 6(e), with a slight disadvantage for the RBF kernel, which 

has a point out of 10%. Analyzing the boxplot in Figure 7(e), despite the statistical 

equivalence between the methods with 2- and 3-degree polynomial and RBF kernels, it is 
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clear that the training time is lower and more stable for the RBF kernel, which is the most 

adequate SVM configuration to solve the problem. 

 

 

(a) (c) (e) 

 

(b) (d) (f) 

Fig. 8 Prediction results for the Random Forest with 10 trees, considering training sets of 4665 instances and 

test sets of 1555 instances, obtained from interpolation of real data, for bimonths 1 (January to February, cf. 

a), 2 (March to April, cf. b), 3 (May to June, cf. c), 4 (July to August, cf. d), 5 (September to October, cf. e), 

and 6 (November to December, cf. f), for the year 2014. Resolution of 120 dpi, scale 1:182666. The 

pseudocolor scale is inverse spectral: low numbers of cases are represented close to blue (0-1 cases per 

neighbourhood); intermediate situations tend to be between green and yellow (2-3 cases per block); high 

numbers of cases tend to red (greater than 3 cases per block). 
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(a) (c) (e) 

 

(b) (d) (f) 

Fig. 9 Prediction results for the Random Forest with 10 trees, considering training sets of 4665 instances and 

test sets of 1555 instances, obtained from interpolation of real data, for bimonths 1 (January to February, cf. 

a), 2 (March to April, cf. b), 3 (May to June, cf. c), 4 (July to August, cf. d), 5 (September to October, cf. e), 

and 6 (November to December, cf. f), for the year 2015. Resolution of 120 dpi, scale 1:182666. The 

pseudocolor scale is inverse spectral: low numbers of cases are represented close to blue (0-1 cases per 

neighbourhood block); intermediate situations tend to be between green and yellow (2-3 cases per block); 

high numbers of cases tend to red (greater than 3 cases per block). 
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(a) (c) (e) 

 

(b) (d) (f) 

Fig. 10 Prediction results for the Random Forest with 10 trees, considering training sets of 4665 instances and 

test sets of 1555 instances, obtained from interpolation of real data, for bimonths 1 (January to February, cf. 

a), 2 (March to April, cf. b), 3 (May to June, cf. c), 4 (July to August, cf. d), 5 (September to October, cf. e), 

and 6 (November to December, cf. f), for the year 2016. Resolution of 120 dpi, scale 1:182666. The 

pseudocolor scale is inverse spectral: low numbers of cases are represented close to blue (0-1 cases per 

neighbourhood block); intermediate situations tend to be between green and yellow (2-3 cases per block); 

high numbers of cases tend to red (greater than 3 cases per block). 

Table 5 displays the results for single-layer and deep echo state machines (ESM and 

Deep ESM, respectively), with 1, 2, 5 and 10 hidden layers. ESM and Deep ESM are neural 

networks trained in the same way as ELMs, but their neurons are different: they are called 

reservoirs and are influenced not only by inputs, but also by values passed from the outputs 

(feedback). Thus, it was expected that its results would be equal to or better than those 

obtained with the ELM, but they were much lower, making this approach really inadequate 

to the problem: the mean values of the correlation index R are practically stagnant at 0.5, 

with a deviation of 0.3, while the RMSE (%) error is on the order of 107 with even larger 

deviations, on the order of 109, while the training time increases a lot with the inclusion of 

more layers, as also shows the boxplot in Figure 7(d). The boxplots of Figures 5(d) and 6(d) 

not only confirm the inadequacy of ESM and Deep ESM in solving the problem, but also 

indicate that these methods, regarding the correlation index R and RMSE (%) error, are 

statistically equivalent. 
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Table 6 illustrates the results for Random Forest, for configurations of 10 to 100 trees, 

step of 10 trees. The results are very good and are repeated for all tested configurations: 

correlation index average R of 0.9999 with a standard deviation of 0.0001, that is, practically 

1.00 in all experiments; RMSE (%) mean 0.6% with standard deviation 0.6% for 10 trees, 

0.6% with standard deviation 0.5% for 20 trees, and 0.5% with deviation 0.5% from 30 trees 

onwards. The boxplot in Figure 5(f) shows that, for the correlation index R, all tested 

configurations are equivalent and can be very good, with results practically concentrated in 

1.00 and with points outside still acceptable, between 0.990 and 0.994. The boxplot in Figure 

6(f) shows the distribution of the results of the RMSE (%) error, showing that the results are 

concentrated between 0 and 1%, therefore below the limit of 5% that was adopted in this 

work, with points out between 7% and 8%. The results also show that the Random Forest 

settings are statistically equivalent. Thus, training time can be considered as a tiebreaker. 

Table 6 shows that the configuration with 10 trees has the fastest training: 30ms average 

with a standard deviation of 9ms. The boxplot in Figure 7(f) shows that the training time 

increases linearly with the increase in the number of trees, as well as the times start to spread 

more. In the 10-tree configuration, training times are concentrated around 25ms with very 

little scattering, with a point off at 200ms. Thus, the Random Forest configuration with 10 

trees is the most suitable for the problem because it is the fastest training, although all the 

tested configurations are statistically equivalent and equally good according to the 

correlation index R and the RMSE (%) error. 

 

4.2 Most relevant features selected by the Artificial Expert Committee 

Table 7 shows the prediction results for the six bimesters of 2014 considering the year 2013. 

Analyzing the result of the artificial analysts committee, it can be seen that, for the prediction 

of the January and February bimester 2014 (2014.1), the following factors were considered 

most relevant: geographic position (latitude and longitude); temperature (t2b1) and wind 

speed (v2b1) in February 2013; number of arboviruses cases in March and April 2013 (cb2); 

rainfall in April 2013 (p2b2); wind speeds in March (v1b2) and May (v1b3), 2013; number 

of cases in July and August 2013 (cb4); temperature in August 2013 (t2b4); wind speeds in 

July (v1b4) and August (v2b4) of 2013; number of cases in September and October 2013 

(cb5); temperature (t2b5) and wind speed (v2b5) in October 2013; number of cases in 

November and December 2013 (cb6) and temperature (t2b6) in December 2013. The 

importance of geographic position and velocities, temperatures and number of cases from 

March to December 2013 in predicting the number of cases is evident in the months of 

January and February 2014. 

In the prediction of the two-month period from March to April 2014 (2014.2), as shown 

in Table 7, the importance of the following factors is evident: geographic position 

(longitude); temperatures in bimonths 2 (March to April 2013), 4 (July to August 2013) and 

5 (September and October 2013); pressure in periods 2 to 5 (from March to October 2013); 

wind speeds in the two months of 2 to 4 (March to July 2013), 6 (November and December 

2013) and 1 (January and February 2014); and number of cases from the 4th to the 1st period 

(July 2013 to February 2014). 

Regarding the prediction of the period from May to June 2014 (2014.3), as shown in 

Table 7, the following factors appeared as the most relevant: geographic position (latitude 

and longitude); temperature from 3 to 4 months (May to August 2013) and from 6 to 2 

(November 2013 to April 2014); wind speeds from the 4th to the 2nd period (July 2013 to 

April 2014); rainfall in the 5th (September to October, 2013) and 1st (January to February, 
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2014) periods; and number of cases throughout the period, except for bimester 5 (September 

to October 2013). 

Considering the forecasting of the two-month period from July to August 2014 (2014.4), 

as shown in Table 7, the following factors stood out: geographic position (latitude and 

longitude); temperature from 4 to 5 (July to October 2013) and 1 to 3 (January to June 2014); 

rainfall in the quarters 4 to 6 (July to December 2013) and 3 (May to June 2014); wind 

speeds from the 5th to the 3rd quarter (September 2013 to June 2014); and number of cases 

in bimesters 1 (January to February 2014) and 3 (May to June 2014). 

Taking into account predicting the two-month period from September to October 2014 

(2014.5), as shown in Table 7, the following factors were highlighted: geographic position 

(latitude); temperature in bimesters 5 (September to October 2013), and from 1 to 4 (January 

to August 2014); rainfall in the 5th (September to October, 2013) and 3rd to 4th (May to 

August, 2014) periods; wind speed in all six quarters; and number of cases in bimesters 1 

(January to February 2014) and from 3 to 4 (May to August 2014). 

In predicting the two-month period from November to December 2014 (2014.6), as 

shown in Table 7, the following factors stood out: geographic position (latitude); rainfall in 

the 6th (November to December, 2013) and 3rd to 4th (May to August, 2014) periods; wind 

speeds in the 6th (November to December, 2013) and 3rd to 4th (May to August, 2014) 

periods; temperature in bimonths 2 (March to April 2014) and from 4 to 5 (July to October 

2014); and number of arboviruses cases in the period 1 (January to February 2014) and from 

3 to 5 (May to August 2014). 

Table 8 shows the prediction results for the six quarters of 2015 considering the year 

2014. Analyzing the result of the consensus or voting in the artificial analysts committee, 

we have, for the prediction of the January bimester to February 2015 (2015.1), the following 

factors considered most relevant: geographic position (latitude); number of arboviruses 

cases in the period 1 to 3 (January to June 2014); temperature in bimesters 1 (January 2014), 

and from 5 to 6 (September to December 2014); rainfall in the two months from 1 to 2 

(January to April 2014); and wind speeds in the two months from 2 to 3 (March to June 

2014) and from 5 to 6 (September to December 2014). 

Regarding the prediction of the two-month period from March to April 2015 (2015.2), 

as shown in Table 8, the following factors stood out: geographic position (latitude); number 

of arboviruses cases in the two-month period from 2 to 6 (March to December 2014); 

temperature and rainfall throughout practically the entire period; and wind speeds in the two 

months from 2 to 3 (March to April 2014) and from 5 to 1 (September 2014 to February 

2015). 

When predicting the number of cases in the period from May to June 2015 (2015.3), 

according to Table 8, the following factors were considered more relevant: geographic 

position (latitude and longitude); number of arboviruses cases in the period 3 to 6 (May to 

December 2014) and 2 (March to April 2015); temperature and wind speed throughout the 

period; and rainfall from the 4th to the 2nd period (July 2014 to April 2015). 

The prediction of the number of cases from July to August 2015 (2015.4), as shown in 

Table 8, depended predominantly on the following factors: geographic position (latitude and 

longitude); number of arboviruses cases from 4 to 6 (July to December 2014) and 3 (May to 

June 2015); temperature and wind speed throughout the period; and rainfall in the 4th (July 

to August 2014) and 6th to 3rd (December 2014 to June 2015) periods. 

Additionally, the prediction of the number of arbovirus cases from September to October 

2015 (2015.5), as shown in Table 8, depended predominantly on the following factors: 

geographic position (latitude and longitude); number of arboviruses cases in the period from 
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5 to 6 (September to December 2014), 2 (March to April 2015) and 4 (July to August 2015); 

and rainfall, temperature and wind speed throughout the period. 

The prediction of the number of arbovirus cases from November to December 2015 

(2015.6), as shown in Table 8, depended mostly on the following factors: geographic 

position (latitude and longitude); number of arboviruses cases in the period from 6 to 2 

(December 2014 to April 2015) and 5 (September to October 2015); and rainfall, 

temperature and wind speed throughout the period. 

Table 9 shows the prediction results for the six bimesters of 2016 considering the year 

2015. Analyzing the result of the consensus or voting in the artificial analysts committee, 

we have, for the prediction of the January bimester to February 2016 (2016.1), the following 

factors considered most relevant: geographic position (longitude); number of arboviruses 

cases in the two months of 1 to 3 (January to June 2015) and 6 (November to December 

2015); temperature from 2 to 6 months (March to December 2015); rainfall in the two 

months from 1 to 3 (January to June 2015) and from 5 to 6 (September to December 2015); 

and wind speed throughout the period considered for prediction. 

In the prediction of the two-month period from March to April 2016 (2016.2), as shown 

in Table 9, the importance of the following factors is evident: temperature in the two-month 

period from 2 to 5 (March to October 2015); wind speeds in the two months of 2 to 4 (March 

to August 2015) and 6 (November to December 2015); and rainfall throughout the period. 

Interestingly, geographic position was not considered relevant. 

Regarding the predicting the May-June 2016 period (2016.3), as shown in Table 9, the 

following factors were considered most relevant: geographic position (latitude and 

longitude); temperature in the quarters from 3 to 5 (May to October 2015) and from 1 to 2 

(January to April 2016); and rainfall in bimonths 3 (May to June 2015) and from 5 to 2 

(September 2015 to April 2016). Wind speed and the number of arbovirus cases were 

considered important throughout the period considered for prediction. 

Considering forecasting the two-month period from July to August 2016 (2016.4), as 

shown in Table 9, the following factors were considered most relevant: geographic position 

(latitude); temperature from 4 to 5 (July to October 2015) and from 1 to 3 (January to June 

2016); wind speeds in the 4th (July to August 2015) and 6th to 3rd (November 2015 to June 

2016) periods; and number of arboviruses cases in the 6th to 3rd period (November 2015 to 

June 2016). Rainfall was considered relevant for the entire prediction period. 

In the prediction of the two-month period from September to October 2016 (i.e. 2016.5), 

according to Table 9, the following factors were considered most relevant: geographic 

position (latitude and longitude); temperature in the quarters from 5 to 6 (September to 

December 2015) and from 2 to 3 (March to June 2016); wind speed in the 5th period 

(September to October 2015) and from 1st to 4th (January to August 2016); and the number 

of cases in bimesters 1 (January to February 2016) and from 3 to 4 (May to August 2016). 

Rainfall was considered important for the entire prediction period. 

The prediction of the number of arbovirus cases from November to December 2016 

(2016.6), as shown in Table 9, depended mostly on the following factors: geographic 

position (latitude); number of arboviruses cases in the period from 6 to 3 (November 2015 

to June 2016) and 5 (September to October 2016); rainfall in the 2nd period (March to April 

2016) and from 4th to 5th (July to October 2016). Temperature and wind speed were 

considered relevant for the entire prediction period. 
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4.3 Spatio-temporal analysis 

Prediction results using Random Forest tend to qualitatively agree with linear regression 

results, but show more concentrated areas with smoother boundaries. As the metrics of Table 

10, especially the RMSE (%) error, point to the superiority of Random Forest over linear 

regression for this problem, it is expected that the results of predictions with linear regression 

will point to some regions a little better and others a little worse than they really are. The 

prediction of the 2014 first bimester is shown in Figure 8(a). The situation in Várzea 

neighborhood (region 736) appears clearly, and it is evident that there are a reasonable 

number of cases in this neighborhood. Forecastings for the remaining bimesters are shown 

in Figures 8(b), 8(c), 8(d), 8(e), and 8(f). 

The prediction made with Random Forest for the first two months of 2015 clearly shows 

the emergence of cases of arboviruses in the north-central neighborhoods, as shown in 

Figure 9(a). Furthermore, the result with Random Forest better illustrates the existence of 

two different peaks in the north-central neighborhoods: one between Vasco da Gama (region 

558) and Casa Amarela (region 434), and the other between Dois Irmãos (region 590), Dois 

Unidos (region 396) and Brejo da Guabiraba (region 612). The prediction for bimester 2 

shows greater control of arboviruses cases, with a general decrease in cases, although there 

is still a concentration of cases in Ibura (region 230), spreading between Cohab (region 884), 

Jordão (region 221), Ipsep (region 213), Boa Viagem (region 205), and towards Pina (region 

248), cf. Figure 9(b). Figure 9(c), in relation to Figure 9(d), shows that the Random Forest 

predictor managed to show a decrease in the area of cases in Boa Viagem in bimester 3 when 

compared to 2. Figure 9(d) shows that, for bimester 4, the number of cases in Cohab (region 

884) exceeded that of Ibura (region 230). This situation remains constant in bimester 5, as 

illustrated in Figure 9(e). The prediction of bimester 6 shows that more cases arose, 

spreading from the south to the center, from Ibura (region 230), which again has the largest 

number of cases, to Afogados (region 779), Mustardinha (region 787), Bongi (region 809), 

Brasília Teimosa (region 256), and São José (region 35), passing through Ipsep (region 213), 

Boa Viagem (region 205), and Pina (region 248), as shown in Figure 9(f). In this case, the 

situation was also well illustrated by the prediction with Random Forest, as shown in Figure 

9(f). 

The prediction made with Random Forest for the bimester 1 of 2016 very clearly shows 

Várzea (region 736) as a peak of arboviruses, along with Ibura (region 230), Cohab (region 

884), and, in a weaker way, Boa Viagem (region 205), as shown in Figure 10(a). The 

prediction of bimester 2, illustrated in Figure 10(b), shows greater control in the number of 

cases in the southern districts, but Várzea (region 736) persists practically in the same way 

as in bimester 1, with a few cases scattered in the Midwestern neighborhoods. The prediction 

for bimester 3 shows again peaks of cases in Cohab (region 884) and Ibura (region 230), and 

a slight spread of cases in Ibura (region 230) towards Boa Viagem (region 205), Ipsep 

(region 213) and Pina (region 248), but with greater control of cases in Várzea (region 736) 

and in the central-western districts, as shown in Figure 10(c). The prediction of bimester 4 

illustrates the increase in cases in the direction of Boa Viagem (region 205), Ipsep (region 

213) and Pina (region 248), confirming the trend observed in bimester 3, according to Figure 

10(d). The prediction for bimester 5 shows a slight improvement compared to bimester 4, 

as shown in Figure 10(e). The prediction for bimester 6 shows a general decrease in cases, 

but there is still a concentration of cases in Cohab (region 884) and Ibura (region 230), and 

the number of cases in Várzea (region 736) increases a little, as shown in Figure 10(f). 

The concentration of the highest occurrence of cases in the western region, which is 

more humid and abundant in green areas, points to the hypothesis that this situation is related 



40 Cecilia Cordeiro da Silva et al. 

to the more favorable development of Aedes aegypti in green areas close to urban regions. 

In contrast, the concentration of high numbers of cases in the southwestern region of the 

city, especially in low-income neighborhoods, suggests a strong relationship with 

infrastructure problems, especially with regular access to water. This leads the inhabitants 

of this region to maintain irregular water reservoirs, which become potential breeding 

grounds for mosquitoes. 

5 Conclusion 

In this work, we propose a methodology to build predictive models, based on machine 

learning, to predict the spatio-temporal distribution of diseases from databases of reported 

cases and geographic information bases. As a case study, we applied the methodology to the 

prediction of arboviruses, specifically dengue, chikungunya and Zika, whose vector is the 

Aedes aegypti mosquito, with data from the City of Recife, Brazil, from 2013 to 2016, which 

included the 2015 Zika virus outbreak associated with the occurrence of malformations in 

newborns. We used open and anonymous data, available for search on the Recife City Open 

Data Portal and obtained from the National Notification System, SINAN, of the Unified 

Health System (SUS) in Brazil. We also use the following geographic, climatic and 

environmental information: wind speeds, temperatures and precipitation, obtained from 

meteorological information systems. Since the density of environmental stations is very 

small, the distribution of these climatic and environmental variables was estimated in a 

regular grid using interpolation. The prediction of cases was performed every two months, 

considering data from the last 12 months. 

The best case prediction results were obtained with Random Forest regression. Due to 

the low computational cost and stability of the results, we chose Random Forest with 10 

trees. Pearson’s correlation coefficient values were above 0.99, while the RMSE (%) 

remained below 6%. Kendall and Spearman indexes also remained high: their values were 

greater than 0.99 for Spearman (close to the Pearson coefficient) and greater than 0.90 for 

Kendall (a more rigorous index than Pearson and Spearman index). The superior 

performance of Random Forest when compared to other regression models shows that the 

regression problem is difficult to generalize, given that Random Forest is based on decision 

tree committees organized as bagging and the regression is performed by a weighted average 

of the results of the different decision trees that make up the model. 

Qualitative spatio-temporal prediction results also show that it is possible to observe the 

dynamics of arboviruses transmitted by the Aedes aegypti mosquito with relative precision. 

The case distributions obtained are smooth, as the numbers of cases obtained were 

concentrated in the neighborhoods and then interpolated. However, the qualitative results 

suggest that more accurate distributions can be obtained if an IoT-based approach is adopted 

for measuring wind speeds, temperatures and rainfall in different neighborhood locations, in 

order to increase data density. Similarly, approximate information about the region of 

occurrence of the case could be used. However, this must be done with care to avoid 

exposure and location of the patient’s place of residence. 

In this work, we also propose an Artificial Experts Committee to select the most relevant 

factors for prediction. This committee is composed of meta-heuristic search and 

optimization methods, namely: genetic algorithms, particle swarm optimization, bee colony 

optimization, and ant colony optimization. These artificial specialists were trained using a 

decision tree as an objective function, using populations of the same size evolving in the 

same number of generations. The most relevant factors for prediction are defined by voting. 
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In this way, the specificities of each virtual specialist end up being compensated and the 

most relevant factors for prediction are better defined, which can help public health 

managers in defining the most important factors for the control of a vector. In the case of 

dengue, chikungunya and Zika, as the vector is Aedes aegypti, the great influence of factors 

such as wind speed, temperatures and rainfall point to the strong seasonality of these 

diseases, which, in turn, indicates their dependence of the vector, ie the mosquito and its life 

cycle. These and other factors, such as the influence of past numbers of cases, can be very 

useful for the planning and execution of public policies aimed at improving the health 

infrastructure and planning and controlling the vector. 

As future work, we intend to build a client-server web system to support the 

spatiotemporal prediction of arboviruses, infectious diseases and other diseases of interest. 

This system will have the ability to make spatial and temporal predictions from the insertion 

of multiple georeferenced databases, in addition to indicating the most relevant factors for 

prediction from the Artificial Experts Committee. It is our intention that this system be made 

available as free software, to adapt to different realities, in different countries and regions, 

so that public health authorities can have quick access to information that support decision-

making. 
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